Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SRGC-Nets: Sparse Repeated Group Convolutional Neural Networks

Authors: Yao Lu; Guangming Lu; Rui Lin; Jinxing Li; David Zhang;

SRGC-Nets: Sparse Repeated Group Convolutional Neural Networks

Abstract

Group convolution is widely used in many mobile networks to remove the filter's redundancy from the channel extent. In order to further reduce the redundancy of group convolution, this article proposes a novel repeated group convolutional (RGC) kernel, which has M primary groups, and each primary group includes N tiny groups. In every primary group, the same convolutional kernel is repeated in all the tiny groups. The RGC filter is the first kernel to remove the redundancy from group extent. Based on RGC, a sparse RGC (SRGC) kernel is also introduced in this article, and its corresponding network is called SRGC neural networks (SRGC-Net). The SRGC kernel is the summation of RGC kernel and pointwise group convolutional (PGC) kernel. The number of PGC's groups is M . Accordingly, in each primary group, besides the center locations in all channels, the values of parameters located in other N-1 tiny groups are all zero. Therefore, SRGC can significantly reduce the parameters. Moreover, it can also effectively retrieve spatial and channel-difference features by utilizing RGC and PGC to preserve the richness of produced features. Comparative experiments were performed on the benchmark classification data sets. Compared with the traditional popular networks, SRGC-Nets can perform better with timely reducing the model size and computational complexity. Furthermore, it can also achieve better performances than other latest state-of-the-art mobile networks on most of the databases and effectively decrease the test and training runtime.

Related Organizations
Keywords

Databases, Factual, Computers, Handheld, Neural Networks, Computer

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!