Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two-Dimensional Quaternion PCA and Sparse PCA

Authors: Xiaolin Xiao; Yicong Zhou;

Two-Dimensional Quaternion PCA and Sparse PCA

Abstract

Benefited from quaternion representation that is able to encode the cross-channel correlation of color images, quaternion principle component analysis (QPCA) was proposed to extract features from color images while reducing the feature dimension. A quaternion covariance matrix (QCM) of input samples was constructed, and its eigenvectors were derived to find the solution of QPCA. However, eigen-decomposition leads to the fixed solution for the same input. This solution is susceptible to outliers and cannot be further optimized. To solve this problem, this paper proposes a novel quaternion ridge regression (QRR) model for two-dimensional QPCA (2D-QPCA). We mathematically prove that this QRR model is equivalent to the QCM model of 2D-QPCA. The QRR model is a general framework and is flexible to combine 2D-QPCA with other technologies or constraints to adapt different requirements of real-world applications. Including sparsity constraints, we then propose a quaternion sparse regression model for 2D-QSPCA to improve its robustness for classification. An alternating minimization algorithm is developed to iteratively learn the solution of 2D-QSPCA in the equivalent complex domain. In addition, 2D-QPCA and 2D-QSPCA can preserve the spatial structure of color images and have a low computation cost. Experiments on several challenging databases demonstrate that 2D-QPCA and 2D-QSPCA are effective in color face recognition, and 2D-QSPCA outperforms the state of the arts.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!