
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The term blind denoising refers to the fact that the basis used for denoising is learnt from the noisy sample itself during denoising. Dictionary learning and transform learning based formulations for blind denoising are well known. But there has been no autoencoder based solution for the said blind denoising approach. So far autoencoder based denoising formulations have learnt the model on a separate training data and have used the learnt model to denoise test samples. Such a methodology fails when the test image (to denoise) is not of the same kind as the models learnt with. This will be first work, where we learn the autoencoder from the noisy sample while denoising. Experimental results show that our proposed method performs better than dictionary learning (KSVD), transform learning, sparse stacked denoising autoencoder and the gold standard BM3D algorithm.
The final version accepted at IEEE Transactions on Neural Networks and Learning Systems
Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Machine Learning, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing, Machine Learning (cs.LG)
Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Machine Learning, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing, Machine Learning (cs.LG)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 71 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
