Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2016 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Semisupervised Multiclass Classification Problems With Scarcity of Labeled Data: A Theoretical Study

Authors: Jose A. Lozano; Iñaki Inza; Jonathan Ortigosa-Hernández;

Semisupervised Multiclass Classification Problems With Scarcity of Labeled Data: A Theoretical Study

Abstract

In recent years, the performance of semisupervised learning (SSL) has been theoretically investigated. However, most of this theoretical development has focused on binary classification problems. In this paper, we take it a step further by extending the work of Castelli and Cover to the multiclass paradigm. In particular, we consider the key problem in SSL of classifying an unseen instance x into one of K different classes, using a training data set sampled from a mixture density distribution and composed of l labeled records and u unlabeled examples. Even under the assumption of identifiability of the mixture and having infinite unlabeled examples, labeled records are needed to determine the K decision regions. Therefore, in this paper, we first investigate the minimum number of labeled examples needed to accomplish that task. Then, we propose an optimal multiclass learning algorithm, which is a generalization of the optimal procedure proposed in the literature for binary problems. Finally, we make use of this generalization to study the probability of error when the binary class constraint is relaxed.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?