Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2015 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Learning to Track Multiple Targets

Authors: Xiao Liu 0012; Dacheng Tao; Mingli Song; Luming Zhang; Jiajun Bu; Chun Chen 0001;

Learning to Track Multiple Targets

Abstract

Monocular multiple-object tracking is a fundamental yet under-addressed computer vision problem. In this paper, we propose a novel learning framework for tracking multiple objects by detection. First, instead of heuristically defining a tracking algorithm, we learn that a discriminative structure prediction model from labeled video data captures the interdependence of multiple influence factors. Given the joint targets state from the last time step and the observation at the current frame, the joint targets state at the current time step can then be inferred by maximizing the joint probability score. Second, our detection results benefit from tracking cues. The traditional detection algorithms need a nonmaximal suppression postprocessing to select a subset from the total detection responses as the final output and a large number of selection mistakes are induced, especially under a congested circumstance. Our method integrates both detection and tracking cues. This integration helps to decrease the postprocessing mistake risk and to improve performance in tracking. Finally, we formulate the entire model training into a convex optimization problem and estimate its parameters using the cutting plane optimization. Experiments show that our method performs effectively in a large variety of scenarios, including pedestrian tracking in crowd scenes and vehicle tracking in congested traffic.

Related Organizations
Keywords

Signal Detection, Psychological, Video Recording, Models, Theoretical, Online Systems, Markov Chains, Pattern Recognition, Automated, Mental Recall, Humans, Learning, Neural Networks, Computer, Algorithms, Photic Stimulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!