
pmid: 15387263
A framework for a class of coupled principal component learning rules is presented. In coupled rules, eigenvectors and eigenvalues of a covariance matrix are simultaneously estimated in coupled equations. Coupled rules can mitigate the stability-speed problem affecting noncoupled learning rules, since the convergence speed in all eigendirections of the Jacobian becomes widely independent of the eigenvalues of the covariance matrix. A number of coupled learning rule systems for principal component analysis, two of them new, is derived by applying Newton's method to an information criterion. The relations to other systems of this class, the adaptive learning algorithm (ALA), the robust recursive least squares algorithm (RRLSA), and a rule with explicit renormalization of the weight vector length, are established.
adaptive learning algorithm, Principal Component Analysis, Newton's method, robust recursive least squares learning algorithm, principal component analysis, Oja's rule, networks, minor component analysis (MCA), speed-stability tradeoff, neural, (PCA)
adaptive learning algorithm, Principal Component Analysis, Newton's method, robust recursive least squares learning algorithm, principal component analysis, Oja's rule, networks, minor component analysis (MCA), speed-stability tradeoff, neural, (PCA)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
