
pmid: 18238026
Transient synchronization has been used as a mechanism of recognizing auditory patterns using integrate-and-fire neural networks. We first extend the mechanism to vision tasks and investigate the role of spike dependent learning. We show that such a temporal Hebbian learning rule significantly improves accuracy of detection. We demonstrate how multiple patterns can be identified by a single pattern selective neuron and how a temporal album can be constructed. This principle may lead to multidimensional memories, where the capacity per neuron is considerably increased with accurate detection of spike synchronization.
QA75
QA75
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
