
pmid: 15816169
Potassium channels are integral membrane proteins that selectively transport K+ across the cell membrane. They are present in all mammalian cells and have a wide variety of roles in both excitable and nonexcitable cells. The phenotypic diversity required to accomplish their various roles is created by differences in conductance, the timecourse and mechanisms of different gating events, and the interaction of channels with a variety of accessory proteins. Through the integration of biophysical, molecular, structural, and theoretical studies, significant progress has been made toward understanding the structural basis of K+ channel function, and diseases associated with K+ channel dysfunction.
Models, Molecular, Cell Membrane Permeability, Potassium Channels, Protein Conformation, Lipid Bilayers, Models, Biological, Membrane Potentials, Structure-Activity Relationship, Models, Chemical, Animals, Humans, Ion Channel Gating
Models, Molecular, Cell Membrane Permeability, Potassium Channels, Protein Conformation, Lipid Bilayers, Models, Biological, Membrane Potentials, Structure-Activity Relationship, Models, Chemical, Animals, Humans, Ion Channel Gating
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
