Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Medical Imaging
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Medical Imaging
Article . 2006 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tomographic reconstruction using an adaptive tetrahedral mesh defined by a point cloud

Authors: Arkadiusz Sitek; Ronald H. Huesman; Grant T. Gullberg;

Tomographic reconstruction using an adaptive tetrahedral mesh defined by a point cloud

Abstract

Medical images in nuclear medicine are commonly represented in three dimensions as a stack of two-dimensional images that are reconstructed from tomographic projections. Although natural and straightforward, this may not be an optimal visual representation for performing various diagnostic tasks. A method for three-dimensional (3-D) tomographic reconstruction is developed using a point cloud image representation. A point cloud is a set of points (nodes) in space, where each node of the point cloud is characterized by its position and intensity. The density of the nodes determines the local resolution allowing for the modeling of different parts of the image with different resolution. The reconstructed volume, which in general could be of any resolution, size, shape, and topology, is represented by a set of nonoverlapping tetrahedra defined by the nodes. The intensity at any point within the volume is defined by linearly interpolating inside a tetrahedron from the values at the four nodes that define the tetrahedron. This approach creates a continuous piecewise linear intensity over the reconstruction domain. The reconstruction provides a distinct multiresolution representation, which is designed to accurately and efficiently represent the 3-D image. The method is applicable to the acquisition of any tomographic geometry, such as parallel-, fan-, and cone-beam; and the reconstruction procedure can also model the physics of the image detection process. An efficient method for evaluating the system projection matrix is presented. The system matrix is used in an iterative algorithm to reconstruct both the intensity and location of the distribution of points in the point cloud. Examples of the reconstruction of projection data generated by computer simulations and projection data experimentally acquired using a Jaszczak cardiac torso phantom are presented. This work creates a framework for voxel-less multiresolution representation of images in nuclear medicine.

Related Organizations
Keywords

Phantoms, Imaging, Information Storage and Retrieval, Reproducibility of Results, Numerical Analysis, Computer-Assisted, Signal Processing, Computer-Assisted, Image Enhancement, Sensitivity and Specificity, Imaging, Three-Dimensional, Image Interpretation, Computer-Assisted, Algorithms, Tomography, Emission-Computed

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 77
    download downloads 45
  • 77
    views
    45
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
57
Top 10%
Top 10%
Top 10%
77
45
hybrid