
arXiv: 2404.15076
The next generation of cellular networks will be characterized by openness, intelligence, virtualization, and distributed computing. The Open Radio Access Network (Open RAN) framework represents a significant leap toward realizing these ideals, with prototype deployments taking place in both academic and industrial domains. While it holds the potential to disrupt the established vendor lock-ins, Open RAN's disaggregated nature raises critical security concerns. Safeguarding data and securing interfaces must be integral to Open RAN's design, demanding meticulous analysis of cost/benefit tradeoffs. In this paper, we embark on the first comprehensive investigation into the impact of encryption on two pivotal Open RAN interfaces: the E2 interface, connecting the base station with a near-real-time RAN Intelligent Controller, and the Open Fronthaul, connecting the Radio Unit to the Distributed Unit. Our study leverages a full-stack O-RAN ALLIANCE compliant implementation within the Colosseum network emulator and a production-ready Open RAN and 5G-compliant private cellular network. This research contributes quantitative insights into the latency introduced and throughput reduction stemming from using various encryption protocols. Furthermore, we present four fundamental principles for constructing security by design within Open RAN systems, offering a roadmap for navigating the intricate landscape of Open RAN security.
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Computer Science - Cryptography and Security, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Cryptography and Security (cs.CR)
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Computer Science - Cryptography and Security, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Cryptography and Security (cs.CR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
