Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Mobile Computing
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Mobile Computing
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

Secure Physical Layer Voting

Authors: Nirnimesh Ghose; Bocan Hu; Yan Zhang 0019; Loukas Lazos;

Secure Physical Layer Voting

Abstract

Distributed wireless networks often employ voting to perform critical network functions such as fault-tolerant data fusion, cooperative sensing, and reaching consensus. Voting is implemented by sending messages to a fusion center or via direct message exchange between participants. However, the delay overhead of message-based voting can be prohibitive when numerous participants have to share the wireless channel in sequence, making it impractical for time-critical applications. In this paper, we propose a fast PHY-layer voting scheme called PHYVOS, which significantly reduces the delay for collecting and tallying votes. In PHYVOS, wireless devices transmit their votes simultaneously by exploiting the subcarrier orthogonality of OFDM and without explicit messaging. Votes are realized by injecting energy to pre-assigned subcarriers. We show that PHYVOS is secure against adversaries that attempt to manipulate the voting outcome. Security is achieved without employing cryptography-based authentication and message integrity schemes. We analytically evaluate the voting robustness as a function of PHY-layer parameters. We extend PHYVOS to operate in ad hoc groups, without the assistance of a fusion center. We discuss practical implementation challenges related to multi-device frequency and time synchronization and present a prototype implementation of PHYVOS on the USRP platform. We complement the implementation with larger scale simulations.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
hybrid