
arXiv: 2106.02350
handle: 20.500.14243/457560 , 10278/5048981
A function $f : U \to \{0,\ldots,n-1\}$ is a minimal perfect hash function for a set $S \subseteq U$ of size $n$, if $f$ bijectively maps $S$ into the first $n$ natural numbers. These functions are important for many practical applications in computing, such as search engines, computer networks, and databases. Several algorithms have been proposed to build minimal perfect hash functions that: scale well to large sets, retain fast evaluation time, and take very little space, e.g., 2 - 3 bits/key. PTHash is one such algorithm, achieving very fast evaluation in compressed space, typically several times faster than other techniques. In this work, we propose a new construction algorithm for PTHash enabling: (1) multi-threading, to either build functions more quickly or more space-efficiently, and (2) external-memory processing to scale to inputs much larger than the available internal memory. Only few other algorithms in the literature share these features, despite of their big practical impact. We conduct an extensive experimental assessment on large real-world string collections and show that, with respect to other techniques, PTHash is competitive in construction time and space consumption, but retains 2 - 6$\times$ better lookup time.
Accepted by IEEE TKDE
FOS: Computer and information sciences, Minimal perfect hashing, Multi-threading, Computer Science - Data Structures and Algorithms, PTHash, External-memory, Data Structures and Algorithms (cs.DS)
FOS: Computer and information sciences, Minimal perfect hashing, Multi-threading, Computer Science - Data Structures and Algorithms, PTHash, External-memory, Data Structures and Algorithms (cs.DS)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
