
arXiv: 2208.03877
Entity linking (EL) is the process of linking entity mentions appearing in text with their corresponding entities in a knowledge base. EL features of entities (e.g., prior probability, relatedness score, and entity embedding) are usually estimated based on Wikipedia. However, for newly emerging entities (EEs) which have just been discovered in news, they may still not be included in Wikipedia yet. As a consequence, it is unable to obtain required EL features for those EEs from Wikipedia and EL models will always fail to link ambiguous mentions with those EEs correctly as the absence of their EL features. To deal with this problem, in this paper we focus on a new task of learning EL features for emerging entities in a general way. We propose a novel approach called STAMO to learn high-quality EL features for EEs automatically, which needs just a small number of labeled documents for each EE collected from the Web, as it could further leverage the knowledge hidden in the unlabeled data. STAMO is mainly based on self-training, which makes it flexibly integrated with any EL feature or EL model, but also makes it easily suffer from the error reinforcement problem caused by the mislabeled data. Instead of some common self-training strategies that try to throw the mislabeled data away explicitly, we regard self-training as a multiple optimization process with respect to the EL features of EEs, and propose both intra-slot and inter-slot optimizations to alleviate the error reinforcement problem implicitly. We construct two EL datasets involving selected EEs to evaluate the quality of obtained EL features for EEs, and the experimental results show that our approach significantly outperforms other baseline methods of learning EL features.
To appear in IEEE TKDE
FOS: Computer and information sciences, Computer Science - Computation and Language, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computation and Language (cs.CL)
FOS: Computer and information sciences, Computer Science - Computation and Language, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computation and Language (cs.CL)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
