
arXiv: 1801.10402
We study the problem of learning to rank from multiple information sources. Though multi-view learning and learning to rank have been studied extensively leading to a wide range of applications, multi-view learning to rank as a synergy of both topics has received little attention. The aim of the paper is to propose a composite ranking method while keeping a close correlation with the individual rankings simultaneously. We present a generic framework for multi-view subspace learning to rank (MvSL2R), and two novel solutions are introduced under the framework. The first solution captures information of feature mappings from within each view as well as across views using autoencoder-like networks. Novel feature embedding methods are formulated in the optimization of multi-view unsupervised and discriminant autoencoders. Moreover, we introduce an end-to-end solution to learning towards both the joint ranking objective and the individual rankings. The proposed solution enhances the joint ranking with minimum view-specific ranking loss, so that it can achieve the maximum global view agreements in a single optimization process. The proposed method is evaluated on three different ranking problems, i.e. university ranking, multi-view lingual text ranking and image data ranking, providing superior results compared to related methods.
Published at IEEE TKDE
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
