
Sequence classification is an important task in data mining. We address the problem of sequence classification using rules composed of interesting patterns found in a dataset of labelled sequences and accompanying class labels. We measure the interestingness of a pattern in a given class of sequences by combining the cohesion and the support of the pattern. We use the discovered patterns to generate confident classification rules, and present two different ways of building a classifier. The first classifier is based on an improved version of the existing method of classification based on association rules, while the second ranks the rules by first measuring their value specific to the new data object. Experimental results show that our rule based classifiers outperform existing comparable classifiers in terms of accuracy and stability. Additionally, we test a number of pattern feature based models that use different kinds of patterns as features to represent each sequence as a feature vector. We then apply a variety of machine learning algorithms for sequence classification, experimentally demonstrating that the patterns we discover represent the sequences well, and prove effective for the classification task.
Computer. Automation, classification rules, Informatique générale, Informatique mathématique, Feature vectors, Informatique appliquée logiciel, sequence classification, interesting patterns
Computer. Automation, classification rules, Informatique générale, Informatique mathématique, Feature vectors, Informatique appliquée logiciel, sequence classification, interesting patterns
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
