Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Knowledge and Data Engineering
Article . 2016 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sentiment Embeddings with Applications to Sentiment Analysis

Authors: Ting Liu; Bing Qin; Duyu Tang; Furu Wei; Ming Zhou; Nan Yang;

Sentiment Embeddings with Applications to Sentiment Analysis

Abstract

We propose learning sentiment-specific word embeddings dubbed sentiment embeddings in this paper. Existing word embedding learning algorithms typically only use the contexts of words but ignore the sentiment of texts. It is problematic for sentiment analysis because the words with similar contexts but opposite sentiment polarity, such as good and bad , are mapped to neighboring word vectors. We address this issue by encoding sentiment information of texts (e.g., sentences and words) together with contexts of words in sentiment embeddings. By combining context and sentiment level evidences, the nearest neighbors in sentiment embedding space are semantically similar and it favors words with the same sentiment polarity. In order to learn sentiment embeddings effectively, we develop a number of neural networks with tailoring loss functions, and collect massive texts automatically with sentiment signals like emoticons as the training data. Sentiment embeddings can be naturally used as word features for a variety of sentiment analysis tasks without feature engineering. We apply sentiment embeddings to word-level sentiment analysis, sentence level sentiment classification, and building sentiment lexicons. Experimental results show that sentiment embeddings consistently outperform context-based embeddings on several benchmark datasets of these tasks. This work provides insights on the design of neural networks for learning task-specific word embeddings in other natural language processing tasks.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    270
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
270
Top 1%
Top 1%
Top 0.1%
Upload OA version
Are you the author? Do you have the OA version of this publication?