
We propose a novel document clustering method which aims to cluster the documents into different semantic classes. The document space is generally of high dimensionality and clustering in such a high dimensional space is often infeasible due to the curse of dimensionality. By using locality preserving indexing (LPI), the documents can be projected into a lower-dimensional semantic space in which the documents related to the same semantics are close to each other. Different from previous document clustering methods based on latent semantic indexing (LSI) or nonnegative matrix factorization (NMF), our method tries to discover both the geometric and discriminating structures of the document space. Theoretical analysis of our method shows that LPI is an unsupervised approximation of the supervised linear discriminant analysis (LDA) method, which gives the intuitive motivation of our method. Extensive experimental evaluations are performed on the Reuters-21578 and TDT2 data sets.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 545 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
