
Distributed locking is commonly adopted for performing concurrency control in distributed systems. It incorporates additional steps for handling deadlocks. This activity is carried out by methods based on wait-for-graphs or probes. The present study examines detection of conflicts based on enhanced local processing for distributed concurrency control. In the proposed "edge detection" approach, a graph-based resolution of access conflicts has been adopted. The technique generates a uniform wait-for precedence order at distributed sites for transactions to execute. The earlier methods based on serialization graph testing are difficult to implement in a distributed environment. The edge detection approach is a fully distributed approach. It presents a unified technique for locking and deadlock detection exercises. The technique eliminates many deadlocks without incurring message overheads.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
