Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Information Technology in Biomedicine
Article . 2003 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

Computer-assisted diagnosis system in digestive endoscopy

Authors: Cauvin, Jean Michel; Le Guillou, Clara; Solaiman, Basel; Robazkiewicz, M.; Le Beux, Pierre; Roux, Christian;

Computer-assisted diagnosis system in digestive endoscopy

Abstract

The purpose of this paper is to present an intelligent atlas of indexed endoscopic lesions that could be used in computer-assisted diagnosis as reference data. The development of such a system requires a mix of medical and engineering skills for analyzing and reproducing the cognitive processes that underlie the medical decision-making process. The analysis of both endoscopists experience and endoscopic terminologies developed by professional associations shows that diagnostic reasoning in digestive endoscopy uses a scene-object approach. The objects correspond to the endoscopic findings and the medical context of examination and the scene to the endoscopic diagnosis. According to expert assessment, the classes of endoscopic findings and diagnoses, their primitive characteristics (or indices), and their relationships have been listed. Each class describes an endoscopic finding or diagnosis in an intensive way. The retrieval method is based on a similarity metric that estimates the membership value of the case under investigation and the prototype of the class. A simulation test with randomized objects demonstrates a good classification of endoscopic findings. The correct class is the unique response in 68% of the tested objects, the first of multiple responses in 28%. Four descriptors are shown to be of major importance in the classification algorithm: anatomic location, shape, color, and relief. At the present time, the application database contains approximately 150 endoscopic images and is accessible via Internet. Experiments are in progress with endoscopists for the validation of the system and for the understanding of the similarity between images. The next step will integrate the system in a learning tool for junior endoscopists.

Country
France
Keywords

Computer-assisted diagnosis, Databases, Factual, 610, Reproducibility of Results, Digestive endoscopy, Sensitivity and Specificity, 004, Pattern Recognition, Automated, Cognition, Artificial Intelligence, Image Interpretation, Computer-Assisted, Diagnosis, Computer-Assisted, Endoscopy, Digestive System, Decision- making aid, [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing, Algorithms, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!