
The work considers the $N$-server distributed computing scenario with $K$ users requesting functions that are linearly-decomposable over an arbitrary basis of $L$ real (potentially non-linear) subfunctions. In our problem, the aim is for each user to receive their function outputs, allowing for reduced reconstruction error (distortion) $ε$, reduced computing cost ($γ$; the fraction of subfunctions each server must compute), and reduced communication cost ($δ$; the fraction of users each server must connect to). For any given set of $K$ requested functions -- which is here represented by a coefficient matrix $\mathbf {F} \in \mathbb{R}^{K \times L}$ -- our problem is made equivalent to the open problem of sparse matrix factorization that seeks -- for a given parameter $T$, representing the number of shots for each server -- to minimize the reconstruction distortion $\frac{1}{KL}\|\mathbf {F} - \mathbf{D}\mathbf{E}\|^2_{F}$ overall $δ$-sparse and $γ$-sparse matrices $\mathbf{D}\in \mathbb{R}^{K \times NT}$ and $\mathbf{E} \in \mathbb{R}^{NT \times L}$. With these matrices respectively defining which servers compute each subfunction, and which users connect to each server, we here design our $\mathbf{D},\mathbf{E}$ by designing tessellated-based and SVD-based fixed support matrix factorization methods that first split $\mathbf{F}$ into properly sized and carefully positioned submatrices, which we then approximate and then decompose into properly designed submatrices of $\mathbf{D}$ and $\mathbf{E}$.
65 Pages, 16 figure. The manuscript is submitted to IEEE Transactions on Information Theory
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
