Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Information Theory
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Private Information Retrieval With Side Information

Authors: Swanand Kadhe; Brenden Garcia; Anoosheh Heidarzadeh; Salim El Rouayheb; Alex Sprintson;

Private Information Retrieval With Side Information

Abstract

We study the problem of Private Information Retrieval (PIR) in the presence of prior side information. The problem setup includes a database of $K$ independent messages possibly replicated on several servers, and a user that needs to retrieve one of these messages. In addition, the user has some prior side information in the form of a subset of $M$ messages, not containing the desired message and unknown to the servers. This problem is motivated by practical settings in which the user can obtain side information opportunistically from other users or has previously downloaded some messages using classical PIR schemes. The objective of the user is to retrieve the required message without revealing its identity while minimizing the amount of data downloaded from the servers. We focus on achieving information-theoretic privacy in two scenarios: (i) the user wants to protect jointly its demand and side information; (ii) the user wants to protect only the information about its demand, but not the side information. To highlight the role of side information, we focus first on the case of a single server (single database). In the first scenario, we prove that the minimum download cost is $K-M$ messages, and in the second scenario it is $\lceil \frac{K}{M+1}\rceil$ messages, which should be compared to $K$ messages, the minimum download cost in the case of no side information. Then, we extend some of our results to the case of the database replicated on multiple servers. Our proof techniques relate PIR with side information to the index coding problem. We leverage this connection to prove converse results, as well as to design achievability schemes.

Shorter version of the paper is accepted in Allerton Conference 2017

Keywords

FOS: Computer and information sciences, Computer Science - Cryptography and Security, Computer Science - Information Theory, Information Theory (cs.IT), Cryptography and Security (cs.CR)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 1%
Top 10%
Top 1%
Green
bronze