
arXiv: 1310.2856
Quantum memories can be regarded as quantum channels that transmit information through time without moving it through space. Aiming at a reliable storage of information we may thus not only encode at the beginning and decode at the end, but also intervene during the transmission - a possibility not captured by the ordinary capacities in Quantum Shannon Theory. In this work we introduce capacities that take this possibility into account and study them in particular for the transmission of quantum information via dynamical semigroups of Lindblad form. When the evolution is subdivided and supplemented by additional continuous semigroups acting on arbitrary block sizes, we show that the capacity of the ideal channel can be obtained in all cases. If the supplementary evolution is reversible, however, this is no longer the case. Upper and lower bounds for this scenario are proven. Finally, we provide a continuous coding scheme and simple examples showing that adding a purely dissipative term to a Liouvillian can sometimes increase the quantum capacity.
28 pages plus 6 pages appendix, 6 figures
Quantum Physics, FOS: Physical sciences, Mathematical Physics (math-ph), Quantum Physics (quant-ph), Mathematical Physics
Quantum Physics, FOS: Physical sciences, Mathematical Physics (math-ph), Quantum Physics (quant-ph), Mathematical Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
