
arXiv: 0908.1916
handle: 1721.1/60037
We consider the problem of delivering content cached in a wireless network of n nodes randomly located on a square of area n. The network performance is described by the n2^n-dimensional caching capacity region of the wireless network. We provide an inner bound on this caching capacity region, and, in the high path-loss regime, a matching (in the scaling sense) outer bound. For large path-loss exponent, this provides an information-theoretic scaling characterization of the entire caching capacity region. The proposed communication scheme achieving the inner bound shows that the problems of cache selection and channel coding can be solved separately without loss of order-optimality. On the other hand, our results show that the common architecture of nearest-neighbor cache selection can be arbitrarily bad, implying that cache selection and load balancing need to be performed jointly.
28 pages, to appear in IEEE Transactions on Information Theory
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 81 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
