Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Image Processing
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Source-Free Object Detection With Detection Transformer

Authors: Huizai Yao; Sicheng Zhao; Shuo Lu; Hui Chen; Yangyang Li; Guoping Liu; Tengfei Xing; +3 Authors

Source-Free Object Detection With Detection Transformer

Abstract

Source-Free Object Detection (SFOD) enables knowledge transfer from a source domain to an unsupervised target domain for object detection without access to source data. Most existing SFOD approaches are either confined to conventional object detection (OD) models like Faster R-CNN or designed as general solutions without tailored adaptations for novel OD architectures, especially Detection Transformer (DETR). In this paper, we introduce Feature Reweighting ANd Contrastive Learning NetworK (FRANCK), a novel SFOD framework specifically designed to perform query-centric feature enhancement for DETRs. FRANCK comprises four key components: (1) an Objectness Score-based Sample Reweighting (OSSR) module that computes attention-based objectness scores on multi-scale encoder feature maps, reweighting the detection loss to emphasize less-recognized regions; (2) a Contrastive Learning with Matching-based Memory Bank (CMMB) module that integrates multi-level features into memory banks, enhancing class-wise contrastive learning; (3) an Uncertainty-weighted Query-fused Feature Distillation (UQFD) module that improves feature distillation through prediction quality reweighting and query feature fusion; and (4) an improved self-training pipeline with a Dynamic Teacher Updating Interval (DTUI) that optimizes pseudo-label quality. By leveraging these components, FRANCK effectively adapts a source-pre-trained DETR model to a target domain with enhanced robustness and generalization. Extensive experiments on several widely used benchmarks demonstrate that our method achieves state-of-the-art performance, highlighting its effectiveness and compatibility with DETR-based SFOD models.

IEEE Transactions on Image Processing

Related Organizations
Keywords

FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Vision and Pattern Recognition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities