Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Image Processing
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

Revisiting Multi-Codebook Quantization

Authors: Xiaosu Zhu; Jingkuan Song; Lianli Gao; Xiaoyan Gu 0001; Heng Tao Shen;

Revisiting Multi-Codebook Quantization

Abstract

Multi-Codebook Quantization (MCQ) is a generalized version of existing codebook-based quantizations for Approximate Nearest Neighbor (ANN) search. Specifically, MCQ picks one codeword for each sub-codebook independently and takes the sum of picked codewords to approximate the original vector. The objective function involves no constraints, therefore, MCQ theoretically has the potential to achieve the best performance because solutions of other codebook-based quantization methods are all covered by MCQ's solution space under the same codebook size setting. However, finding the optimal solution to MCQ is proved to be NP-hard due to its encoding process, i.e., converting an input vector to a binary code. To tackle this, researchers apply constraints to it to find near-optimal solutions or employ heuristic algorithms that are still time-consuming for encoding. Different from previous approaches, this paper takes the first attempt to find a deep solution to MCQ. The encoding network is designed to be as simple as possible, so the very complex encoding problem becomes simply a feed-forward. Compared with other methods on three datasets, our method shows state-of-the-art performance. Notably, our method is 11× - 38× faster than heuristic algorithms for encoding, which makes it more practical for the real scenery of large-scale retrieval. Our code is publicly available: https://github.com/DeepMCQ/DeepQ.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!