Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Image Processing
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fine-Grained Hashing With Double Filtering

Authors: Zhen-Duo Chen; Xin Luo; Yongxin Wang; Shanqing Guo; Xin-Shun Xu;

Fine-Grained Hashing With Double Filtering

Abstract

Fine-grained hashing is a new topic in the field of hashing-based retrieval and has not been well explored up to now. In this paper, we raise three key issues that fine-grained hashing should address simultaneously, i.e., fine-grained feature extraction, feature refinement as well as a well-designed loss function. In order to address these issues, we propose a novel Fine-graIned haSHing method with a double-filtering mechanism and a proxy-based loss function, FISH for short. Specifically, the double-filtering mechanism consists of two modules, i.e., Space Filtering module and Feature Filtering module, which address the fine-grained feature extraction and feature refinement issues, respectively. Thereinto, the Space Filtering module is designed to highlight the critical regions in images and help the model to capture more subtle and discriminative details; the Feature Filtering module is the key of FISH and aims to further refine extracted features by supervised re- weighting and enhancing. Moreover, the proxy-based loss is adopted to train the model by preserving similarity relationships between data instances and proxy-vectors of each class rather than other data instances, further making FISH much efficient and effective. Experimental results demonstrate that FISH achieves much better retrieval performance compared with state-of-the-art fine-grained hashing methods, and converges very fast. The source code is publicly available: https://github.com/chenzhenduo/FISH.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!