
pmid: 32011251
Fast and accurate ellipse detection is critical in certain computer vision tasks. In this paper, we propose an arc adjacency matrix-based ellipse detection (AAMED) method to fulfill this requirement. At first, after segmenting the edges into elliptic arcs, the digraph-based arc adjacency matrix (AAM) is constructed to describe their triple sequential adjacency states. Curvature and region constraints are employed to make the AAM sparse. Secondly, through bidirectionally searching the AAM, we can get all arc combinations which are probably true ellipse candidates. The cumulative-factor (CF) based cumulative matrices (CM) are worked out simultaneously. CF is irrelative to the image context and can be pre-calculated. CM is related to the arcs or arc combinations and can be calculated by the addition or subtraction of CF. Then the ellipses are efficiently fitted from these candidates through twice eigendecomposition of CM using Jacobi method. Finally, a comprehensive validation score is proposed to eliminate false ellipses effectively. The score is mainly influenced by the constraints about adaptive shape, tangent similarity, distribution compensation. Experiments show that our method outperforms the 12 state-of-the-art methods on 9 datasets as a whole, with reference to recall, precision, F-measure, and time-consumption.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
