Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Image Processing
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Compression of Plenoptic Point Clouds

Authors: Gustavo Sandri; Ricardo L. de Queiroz; Philip A. Chou;

Compression of Plenoptic Point Clouds

Abstract

Point clouds have been recently used in applications involving real-time capture and rendering of 3D objects. In a point cloud, for practical reasons, each point or voxel is usually associated with one single color along with other attributes. The region-adaptive hierarchical transform (RAHT) coder has been proposed for single-color point clouds. The cloud is usually captured by many cameras and the colors are averaged in some fashion to yield the point color. This approach may not be very realistic since, in real world objects, the reflected light may significantly change with the viewing angle, especially if specular surfaces are present. For that, we are interested in a more complete representation, the plenoptic point cloud, wherein every point has associated colors in all directions. Here, we propose a compression method for such a representation. Instead of encoding a continuous function, since there is only a finite number of cameras, it makes sense to compress as many colors per voxel as cameras, and to leave any intermediary color rendering interpolation to the decoder. Hence, each voxel is associated with a vector of color values, for each color component. We have here developed and evaluated four methods to expand the RAHT coder to encompass the multiple colors case. Experiments with synthetic data helped us to correlate specularity with the compression, since object specularity, at a given point in space, directly affects color disparity among the cameras, impacting the coder performance. Simulations were carried out using natural (captured) data and results are presented as rate-distortion curves that show that a combination of Kahunen-Loève transform and RAHT achieves the best performance.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?