<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We propose a sparse imaging methodology called Chaotic Sensing (ChaoS) that enables the use of limited yet deterministic linear measurements through fractal sampling. A novel fractal in the discrete Fourier transform is introduced that always results in the artefacts being turbulent in nature. These chaotic artefacts have characteristics that are image independent, facilitating their removal through dampening (via image denoising) and obtaining the maximum likelihood solution. In contrast with existing methods, such as compressed sensing, the fractal sampling is based on digital periodic lines that form the basis of discrete projected views of the image without requiring additional transform domains. This allows the creation of finite iterative reconstruction schemes in recovering an image from its fractal sampling that is also new to discrete tomography. As a result, ChaoS supports linear measurement and optimisation strategies, while remaining capable of recovering a theoretically exact representation of the image. We apply the method to simulated and experimental limited magnetic resonance (MR) imaging data, where restrictions imposed by MR physics typically favour linear measurements for reducing acquisition time.
1712 Software, 515, Computer Graphics and Computer-Aided Design, 1704 Computer Graphics and Computer-Aided Design, Software
1712 Software, 515, Computer Graphics and Computer-Aided Design, 1704 Computer Graphics and Computer-Aided Design, Software
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |