
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Superpixel segmentation is becoming ubiquitous in computer vision. In practice, an object can either be represented by a number of segments in finer levels of detail or included in a surrounding region at coarser levels of detail, and thus a superpixel segmentation hierarchy is useful for applications that require different levels of image segmentation detail depending on the particular image objects segmented. Unfortunately, there is no method that can generate all scales of superpixels accurately in real-time. As a result, a simple yet effective algorithm named Super Hierarchy (SH) is proposed in this paper. It is as accurate as the state-of-the-art but 1-2 orders of magnitude faster. The proposed method can be directly integrated with recent efficient edge detectors like the structured forest edges to significantly outperforms the state-of-the-art in terms of segmentation accuracy. Quantitative and qualitative evaluation on a number of computer vision applications was conducted, demonstrating that the proposed method is the top performer.
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 77 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
