Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Image Processing
Article . 2011 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Autofluorescence Removal by Non-Negative Matrix Factorization

Authors: Ali Can; Xiaodong Tao; Musodiq Bello; Franco Woolfe; Michael J. Gerdes;

Autofluorescence Removal by Non-Negative Matrix Factorization

Abstract

This paper describes a new, physically interpretable, fully automatic algorithm for removal of tissue autofluorescence (AF) from fluorescence microscopy images, by non-negative matrix factorization. Measurement of signal intensities from the concentration of certain fluorescent reporter molecules at each location within a sample of biological tissue is confounded by fluorescence produced by the tissue itself (autofluorescence). Spectral mixing models use mixing coefficients to specify how much fluorescence from each source is present and unmixing algorithms separate the two fluorescent sources. Current spectral unmixing methods for AF removal often require a priori knowledge of mixing coefficients. Those which do not, such as principal component analysis, generate negative mixing coefficients that are not physically meaningful. Non-negative matrix factorization constrains mixing coefficients to be non-negative, and has been used for spectral unmixing, but not AF removal. This paper describes a novel non-negative matrix factorization algorithm which separates fluorescent images into true signal and AF components utilizing an estimate of the dark current. We also present a test-bed, based on fluorescent beads, to compare the performance of different AF removal algorithms. Our algorithm out-performed previous state of the art on validation images.

Related Organizations
Keywords

Microscopy, Fluorescence, Subtraction Technique, Image Interpretation, Computer-Assisted, Artifacts, Image Enhancement, Sensitivity and Specificity, Algorithms, Pattern Recognition, Automated

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!