
pmid: 19932997
Image denoising has been a well studied problem in the field of image processing. Yet researchers continue to focus attention on it to better the current state-of-the-art. Recently proposed methods take different approaches to the problem and yet their denoising performances are comparable. A pertinent question then to ask is whether there is a theoretical limit to denoising performance and, more importantly, are we there yet? As camera manufacturers continue to pack increasing numbers of pixels per unit area, an increase in noise sensitivity manifests itself in the form of a noisier image. We study the performance bounds for the image denoising problem. Our work in this paper estimates a lower bound on the mean squared error of the denoised result and compares the performance of current state-of-the-art denoising methods with this bound. We show that despite the phenomenal recent progress in the quality of denoising algorithms, some room for improvement still remains for a wide class of general images, and at certain signal-to-noise levels. Therefore, image denoising is not dead--yet.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 350 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
