Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Image Processing
Article . 2009 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

Semi-Supervised Bilinear Subspace Learning

Authors: Dong Xu 0001; Shuicheng Yan;

Semi-Supervised Bilinear Subspace Learning

Abstract

Recent research has demonstrated the success of tensor based subspace learning in both unsupervised and supervised configurations (e.g., 2-D PCA, 2-D LDA, and DATER). In this correspondence, we present a new semi-supervised subspace learning algorithm by integrating the tensor representation and the complementary information conveyed by unlabeled data. Conventional semi-supervised algorithms mostly impose a regularization term based on the data representation in the original feature space. Instead, we utilize graph Laplacian regularization based on the low-dimensional feature space. An iterative algorithm, referred to as adaptive regularization based semi-supervised discriminant analysis with tensor representation (ARSDA/T), is also developed to compute the solution. In addition to handling tensor data, a vector-based variant (ARSDA/V) is also presented, in which the tensor data are converted into vectors before subspace learning. Comprehensive experiments on the CMU PIE and YALE-B databases demonstrate that ARSDA/T brings significant improvement in face recognition accuracy over both conventional supervised and semi-supervised subspace learning algorithms.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!