
pmid: 18482886
Motion information scalability is an important requirement for a fully scalable video codec, especially for decoding scenarios of low bit rate or small image size. So far, several scalable coding techniques on motion information have been proposed, including progressive motion vector precision coding and motion vector field layered coding. However, it is still vague on the required functionalities of motion scalability and how it collaborates flawlessly with other scalabilities, such as spatial, temporal, and quality, in a scalable video codec. In this paper, we first define the functionalities required for motion scalability. Based on these requirements, a fully scalable motion model is proposed along with tailored encoding techniques to minimize the coding overhead of scalability. Moreover, the associated rate distortion optimized motion estimation algorithm will be provided to achieve better efficiency throughout various decoding scenarios. Simulation results will be presented to verify the superiorities of proposed scalable motion model over nonscalable ones.
Models, Statistical, Video Recording, Reproducibility of Results, Signal Processing, Computer-Assisted, Data Compression, Image Enhancement, Sensitivity and Specificity, Pattern Recognition, Automated, Motion, Image Interpretation, Computer-Assisted, Computer Simulation, Algorithms
Models, Statistical, Video Recording, Reproducibility of Results, Signal Processing, Computer-Assisted, Data Compression, Image Enhancement, Sensitivity and Specificity, Pattern Recognition, Automated, Motion, Image Interpretation, Computer-Assisted, Computer Simulation, Algorithms
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
