
pmid: 16764291
We propose the concept of quality-aware image, in which certain extracted features of the original (high-quality) image are embedded into the image data as invisible hidden messages. When a distorted version of such an image is received, users can decode the hidden messages and use them to provide an objective measure of the quality of the distorted image. To demonstrate the idea, we build a practical quality-aware image encoding, decoding and quality analysis system, which employs: 1) a novel reduced-reference image quality assessment algorithm based on a statistical model of natural images and 2) a previously developed quantization watermarking-based data hiding technique in the wavelet transform domain.
Quality Control, Image Interpretation, Computer-Assisted, Signal Processing, Computer-Assisted, Data Compression, Image Enhancement, Algorithms
Quality Control, Image Interpretation, Computer-Assisted, Signal Processing, Computer-Assisted, Data Compression, Image Enhancement, Algorithms
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 241 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
