Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Image Processing
Article . 2005 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Image registration for image-based rendering

Authors: Angus M K, Siu; Rynson W H, Lau;

Image registration for image-based rendering

Abstract

Image-based rendering (IBR) has received much attention in recent years for its ability to synthesize photo-realistic novel views. To support translational motion, existing IBR methods either require a large amount of reference images or assume that some geometric information is available. However, rendering with a large amount of images is very expensive in terms of image acquisition, data storage, and memory costs. As IBR accepts various kinds of geometric proxy, we may use image registration techniques, such as stereo matching and structure and motion recognition, to obtain geometric information to help reduce the number of images required. Unfortunately, existing image registration techniques only support a small search range and require closely sampled reference images. This results in a high spatial sampling rate, making IBR impractical for use in scalable walkthrough environments. Our primary objective of this project is to develop an image registration technique that would recover the geometric proxy for IBR while, at the same time, reducing the number of reference images required. In this paper, we analyze the roles and requirements of an image registration technique for reducing the spatial sampling rate. Based on these requirements, we present a novel image registration technique to automatically recover the geometric proxy from reference images. With the distinguishing feature of supporting a large search range, the new method can accurately identify correspondences even though the reference images may only be sparsely sampled. This can significantly reduce the acquisition effort, the model size, and the memory cost.

Related Organizations
Keywords

Information Storage and Retrieval, Reproducibility of Results, Numerical Analysis, Computer-Assisted, Signal Processing, Computer-Assisted, Image Enhancement, Sensitivity and Specificity, Pattern Recognition, Automated, User-Computer Interface, Artificial Intelligence, Subtraction Technique, Image Interpretation, Computer-Assisted, Computer Graphics, Cluster Analysis, Paintings, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Average
bronze