<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 15326852
In this paper, we introduce a framework that merges classical ideas borrowed from scale-space and multiresolution segmentation with nonlinear partial differential equations. A non-linear scale-space stack is constructed by means of an appropriate diffusion equation. This stack is analyzed and a tree of coherent segments is constructed based on relationships between different scale layers. Pruning this tree proves to be a very efficient tool for unsupervised segmentation of different classes of images (e.g., natural, medical, etc.). This technique is light on the computational point of view and can be extended to nonscalar data in a straightforward manner.
Nonlinear Dynamics, Image Interpretation, Computer-Assisted, Linear Models, Reproducibility of Results, Signal Processing, Computer-Assisted, Image Enhancement, Sensitivity and Specificity, Algorithms, Pattern Recognition, Automated
Nonlinear Dynamics, Image Interpretation, Computer-Assisted, Linear Models, Reproducibility of Results, Signal Processing, Computer-Assisted, Image Enhancement, Sensitivity and Specificity, Algorithms, Pattern Recognition, Automated
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 46 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |