Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Instrumentation and Measurement
Article . 2016 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Object Recognition Using Tactile Measurements: Kernel Sparse Coding Methods

Authors: Huaping Liu; Di Guo; Fuchun Sun;

Object Recognition Using Tactile Measurements: Kernel Sparse Coding Methods

Abstract

Dexterous robots have emerged in the last decade in response to the need for fine-motor-control assistance in applications as diverse as surgery, undersea welding, and mechanical manipulation in space. Crucial to the fine operation and contact environmental perception are tactile sensors that are fixed on the robotic fingertips. These can be used to distinguish material texture, roughness, spatial features, compliance, and friction. In this paper, we regard the investigated tactile data as time sequences, of which dissimilarity can be evaluated by the popular dynamic time warping method. A kernel sparse coding method is therefore developed to address the tactile data representation and classification problem. However, the naive use of sparse coding neglects the intrinsic relation between individual fingers, which simultaneously contact the object. To tackle this problem, we develop a joint kernel sparse coding model to solve the multifinger tactile sequence classification problem. In this model, the intrinsic relations between fingers are explicitly taken into account using the joint sparse coding, which encourages all of the coding vectors to share the same sparsity support pattern. The experimental results show that the joint sparse coding achieves better performance than conventional sparse coding.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    167
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
167
Top 1%
Top 1%
Top 0.1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!