Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Industrial Electronics
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Activity Recognition Using Temporal Optical Flow Convolutional Features and Multilayer LSTM

Authors: Amin Ullah; Khan Muhammad; Javier Del Ser; Sung Wook Baik; Victor Hugo C. de Albuquerque;

Activity Recognition Using Temporal Optical Flow Convolutional Features and Multilayer LSTM

Abstract

Nowadays digital surveillance systems are universally installed for continuously collecting enormous amounts of data, thereby requiring human monitoring for the identification of different activities and events. Smarter surveillance is the need of this era through which normal and abnormal activities can be automatically identified using artificial intelligence and computer vision technology. In this paper, we propose a framework for activity recognition in surveillance videos captured over industrial systems. The continuous surveillance video stream is first divided into important shots, where shots are selected using the proposed convolutional neural network (CNN) based human saliency features. Next, temporal features of an activity in the sequence of frames are extracted by utilizing the convolutional layers of a FlowNet2 CNN model. Finally, a multilayer long short-term memory is presented for learning long-term sequences in the temporal optical flow features for activity recognition. Experiments 1 1 https://github.com/Aminullah6264/Activity_Rec_ML-LSTM . are conducted using different benchmark action and activity recognition datasets, and the results reveal the effectiveness of the proposed method for activity recognition in industrial settings compared with state-of-the-art methods.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    140
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
140
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?