Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microphysical cross validation of spaceborne radar and ground polarimetric radar

Authors: V. Chandrasekar; Eugenio Gorgucci; Steven M. Bolen;

Microphysical cross validation of spaceborne radar and ground polarimetric radar

Abstract

Ground-based polarimetric radar observations along the beam path of the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), matched in resolution volume and aligned to PR measurements, are used to estimate the parameters of a gamma raindrop size distribution (RSD) model along the radar beam in the presence of rain. The PR operates at 13.8 GHz, and its signal returns can undergo significant attenuation due to rain, which requires compensation to adequately assess the rain rate. The current PR algorithm used for attenuation correction of the reflectivity is cross-validated using ground-based dual-polarization radar measurements. Data from the Texas and Florida Underflights (TEFLUN-B) campaign and TRMM Large-scale Biosphere Atmosphere (LBA) experiment are used in the analysis. The statistical behavior of the raindrop size distribution parameters are presented along the vertical profile through the rain layer, which is used to evaluate the PR attenuation correction and rainfall algorithms. The PR rain rate estimates are compared to ground radar estimates. The standard error of the difference between the rainfall estimates from PR and ground radar was within the error of the rainfall estimates from the two instruments. Though no systematic differences between PR attenuation-corrected reflectivity and ground radar reflectivity measurements are observed, there may exist some undercorrection and overcorrection on a beam-by-beam basis. Comparison of the normalized reflectivity versus rainfall relation between PR and ground polarimetric radar is also presented.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?