Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Evolutionary Computation
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adaptive Multifactorial Evolutionary Optimization for Multitask Reinforcement Learning

Authors: Aritz D. Martinez; Javier Del Ser; Eneko Osaba; Francisco Herrera;

Adaptive Multifactorial Evolutionary Optimization for Multitask Reinforcement Learning

Abstract

Evolutionary computation has largely exhibited its potential to complement conventional learning algorithms in a variety of Machine Learning tasks, especially those related to unsupervised (clustering) and supervised learning. It has not been until lately when the computational efficiency of evolutionary solvers has been put in prospective for training reinforcement learning models. However, most studies framed so far within this context have considered environments and tasks conceived in isolation, without any exchange of knowledge among related tasks. In this manuscript we present A-MFEA-RL, an adaptive version of the well-known MFEA algorithm whose search and inheritance operators are tailored for multitask reinforcement learning environments. Specifically, our approach includes crossover and inheritance mechanisms for refining the exchange of genetic material, which rely on the multi-layered structure of modern Deep Learning based reinforcement learning models. In order to assess the performance of the proposed approach, we design an extensive experimental setup comprising multiple reinforcement learning environments of varying levels of complexity, over which the performance of A-MFEA-RL is compared to that furnished by alternative non-evolutionary multitask reinforcement learning approaches. As concluded from the discussion of the obtained results, A-MFEA-RL not only achieves competitive success rates over the simultaneously addressed tasks, but also fosters the exchange of knowledge among tasks that could be intuitively expected to keep a degree of synergistic relationship.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?