
Uncertainty inadvertently exists in most real-world applications. In the optimization process, uncertainty poses a very important issue and it directly affects the optimization performance. Nowadays, evolutionary algorithms (EAs) have been successfully applied to various multiobjective optimization problems (MOPs). However, current researches on EAs rarely consider uncertainty in the optimization process and existing algorithms often fail to handle the uncertainty, which have limited EAs’ applications in real-world problems. When MOPs come with uncertainty, they are referred to as robust MOPs (RMOPs). In this paper, we aim at solving RMOPs using EA-based optimization search. We propose a novel robust multiobjective optimization EA (RMOEA) with two distinct, yet complement, parts: 1) multiobjective optimization finding global Pareto optimal front ignoring disturbance at first and 2) robust optimization searching for the robust optimal front afterward. Furthermore, a comprehensive performance evaluation method is proposed to quantify the performance of RMOEA in solving RMOPs. Experimental results on a group of benchmark functions demonstrate the superiority of the proposed design in terms of both solutions’ quality under the disturbance and computational efficiency in solving RMOPs.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
