Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Evolutionary Computation
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coevolutionary Multiobjective Evolutionary Algorithms: Survey of the State-of-the-Art

Authors: Luis Miguel Antonio; Carlos A. Coello Coello;

Coevolutionary Multiobjective Evolutionary Algorithms: Survey of the State-of-the-Art

Abstract

In the last 20 years, evolutionary algorithms (EAs) have shown to be an effective method to solve multiobjective optimization problems (MOPs). Due to their population-based nature, multiobjective EAs (MOEAs) are able to generate a set of tradeoff solutions (called nondominated solutions) in a single algorithmic execution instead of having to perform a series of independent executions, as normally done with mathematical programming techniques. Additionally, MOEAs can be successfully applied to problems with difficult features such as multifrontality, discontinuity and disjoint feasible regions, among others. On the other hand, coevolutionary algorithms (CAs) are extensions of traditional EAs which have become subject of numerous studies in the last few years, particularly for dealing with large-scale global optimization problems. CAs have also been applied to the solution of MOPs, motivating the development of new algorithmic and analytical formulations that have advanced the state-of-the-art in CAs research, while simultaneously opening a new research path within MOEAs. This paper presents a critical review of the most representative coevolutionary MOEAs (CMOEAs) that have been reported in the specialized literature. This survey includes a taxonomy of approaches together with a brief description of their main features. In the final part of this paper, we also identify what we believe to be promising areas of future research in the field of CMOEAs.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    146
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
146
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!