Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Evolutionary Computation
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Evolutionary Computation
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DMOEA- $\varepsilon \text{C}$ : Decomposition-Based Multiobjective Evolutionary Algorithm With the $\varepsilon $ -Constraint Framework

Authors: Jie Chen; Juan Li; Bin Xin;

DMOEA- $\varepsilon \text{C}$ : Decomposition-Based Multiobjective Evolutionary Algorithm With the $\varepsilon $ -Constraint Framework

Abstract

Decomposition is an efficient and prevailing strategy for solving multiobjective optimization problems (MOPs). Its success has been witnessed by the multiobjective evolutionary algorithm MOEA/D and its variants. In decomposition-based methods, an MOP is decomposed into a number of scalar subproblems by using various scalarizing functions. Most decomposition schemes adopt the weighting method to construct scalarizing functions. In this paper, another classical generation method in the field of mathematical programming, that is the $ {\varepsilon }$ -constraint method, is adopted for the multiobjective optimization. It selects one of the objectives as the main objective and converts other objectives into constraints. We incorporate the $ {\varepsilon }$ -constraint method into the decomposition strategy and propose a new decomposition-based multiobjective evolutionary algorithm with the $ {\varepsilon }$ -constraint framework (DMOEA- $ {\varepsilon }\text{C}$ ). It decomposes an MOP into a series of scalar constrained optimization subproblems by assigning each subproblem with an upper bound vector. These subproblems are optimized simultaneously by using information from neighboring subproblems. Besides, a main objective alternation strategy, a solution-to-subproblem matching procedure, and a subproblem-to-solution matching procedure are proposed to strike a balance between convergence and diversity. DMOEA- $ {\varepsilon }\text{C}$ is compared with a number of state-of-the-art multiobjective evolutionary algorithms. Experimental studies demonstrate that DMOEA- $ {\varepsilon }\text{C}$ outperforms or performs competitively against these algorithms on the majority of 34 continuous benchmark problems, and it also shows obvious advantages in solving multiobjective 0-1 knapsack problems.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
hybrid