
In recent years, the concept of "autonomous mental development" (AMD) has been applied to the construction of artificial systems such as conversational agents, in order to resolve some of the difficulties involved in the manual definition of their knowledge bases and behavioral patterns. AMD is a new paradigm for developing autonomous machines, which are adaptive and flexible to the environment. Language development, a kind of mental development, is an important aspect of intelligent conversational agents. In this paper, we propose an intelligent conversational agent and its language development mechanism by putting together five promising techniques: Bayesian networks, pattern matching, finite-state machines, templates, and genetic programming (GP). Knowledge acquisition implemented by finite-state machines and templates, and language learning by GP are used for language development. Several illustrations and usability tests show the usefulness of the proposed developmental conversational agent
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
