Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Dependable and Secure Computing
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Side Channel Attacks on GPUs

Authors: Hoda Naghibijouybari; Ajaya Neupane; Zhiyun Qian; Nael Abu-Ghazaleh;

Side Channel Attacks on GPUs

Abstract

Graphics Processing Units (GPUs) are commonly integrated with computing devices to enhance the performance and capabilities of graphical workloads. In addition, they are increasingly being integrated in data centers and clouds such that they can be used to accelerate data intensive workloads. Under a number of scenarios the GPU can be shared between multiple applications at a fine granularity allowing a spy application to monitor side channels and attempt to infer the behavior of the victim. For example, OpenGL and WebGL send workloads to the GPU at the granularity of a frame, allowing an attacker to interleave the use of the GPU to measure the side-effects of the victim computation through performance counters or other resource tracking APIs. We demonstrate the vulnerability by implementing three end-to-end attacks. We show that an OpenGL or CUDA based spy can fingerprint websites accurately (attack I), track user activities within the website, and even infer the keystroke timings for a password text box (attack II) with high accuracy. The third attack demonstrates how a CUDA spy application can derive the internal parameters of a neural network model being used by another CUDA application on the cloud. To counter these attacks, the paper suggests mitigations based on limiting the rate of the calls, or limiting the granularity of the returned information.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?