Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CONICET Digital
Article . 2016
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Dielectrics and Electrical Insulation
Article . 2016 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A physical approach of the test voltage function for evaluation of the impulse parameters in lightning impulse voltages with superimposed oscillations and overshoots

Authors: Diaz, Ricardo Ruben; Segovia, Adán Aldo;

A physical approach of the test voltage function for evaluation of the impulse parameters in lightning impulse voltages with superimposed oscillations and overshoots

Abstract

The introduction of the test voltage function or k-factor in IEC 60060-1 Ed. 3 has been an important step to ensure reproducibility and traceability in high voltage tests techniques for lightning impulses with superposed oscillations and overshoots. The standard recommends computed fitting methods to extract a base curve from the oscillating recorded voltage curve and, applying the test voltage function, it is possible to calculate the impulse parameters. Testing external insulations with positive polarity lightning impulses at 50% breakdown voltage or lower level, the disruptive discharge usually arrives after ten microseconds. For these cases the test voltage function and procedures for calculating impulse parameters proposed by the standard may lead to divergent results. In this paper a new approach is proposed for fitting the base curve for metric air gaps based on the relevance of the leader propagation phase, highlighting the influence of the instantaneous voltage between the impulse crest and the time-tobreakdown. A comparison of three calculation methods for test curves with long timeto- breakdown is discussed and a new test voltage function obtained by measurements on a 1 m rod-plane air gap is proposed. Compared to the standard test voltage factor, this approach evidences a negligible influence of oscillations and the relevancy of the impulse tail voltage for testing external insulations with moderately distorted lightning impulses. Finally, a generalization of the voltage test function is proposed for several types of insulation considering mainly the average breakdown times.

Keywords

BASE CURVE, LIGHTNING IMPULSE, DIELECTRIC BREAKDOWN, https://purl.org/becyt/ford/2.2, OVERSHOOT, https://purl.org/becyt/ford/2, INSULATION, TEST VOLTAGE, TEST VOLTAGE FUNCTION

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!