Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Cybernetics
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A New Perspective to Graphical Characterization of Multiagent Controllability

Authors: Haisheng Yu; Zhijian Ji;

A New Perspective to Graphical Characterization of Multiagent Controllability

Abstract

Recently, graphical characterization of multiagent controllability has been studied extensively. A major effort in the study is to determine controllability directly from topology structures of communication graphs. In this paper, we proposed the concept of controllability destructive nodes, which indicates that the difficulty in graphical characterization turns out to be the identification of topology structures of controllability destructive nodes. It is shown that each kind of double and triple controllability destructive nodes happens to have a uniform topology structure which can be defined similarly. The definition, however, is verified not to be applicable to the topology structures of quadruple controllability destructive (QCD) nodes. Even so, a design method is proposed to uncover topology structures of QCD nodes for graphs with any size, and a complete graphical characterization is presented for the graphs consisting of five vertices. One advantage of the established complete graphical characterization is that the controllability of any graph with any selection of leaders can be determined directly from the identified/defined destructive topology structures. The results generate several necessary and sufficient graphical conditions for controllability. A key step of arriving at these results is the discovery of a relationship between the topology structure of the controllability destructive nodes and a corresponding eigenvector of the Laplacian matrix.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    157
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
157
Top 1%
Top 10%
Top 0.1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!