Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Circuits and Systems for Video Technology
Article . 2002 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Document image segmentation using wavelet scale-space features

Authors: Mausumi Acharyya; Malay K. Kundu;

Document image segmentation using wavelet scale-space features

Abstract

An efficient and computationally fast method for segmenting text and graphics part of document images based on textural cues is presented. We assume that the graphics part have different textural properties than the nongraphics (text) part. The segmentation method uses the notion of multiscale wavelet analysis and statistical pattern recognition. We have used M-band wavelets which decompose an image into M/spl times/M bandpass channels. Various combinations of these channels represent the image at different scales and orientations in the frequency plane. The objective is to transform the edges between textures into detectable discontinuities and create the feature maps which give a measure of the local energy around each pixel at different scales. From these feature maps, a scale-space signature is derived, which is the vector of features at different scales taken at each single pixel in an image. We achieve segmentation by simple analysis of the scale-space signature with traditional k- means clustering. We do not assume any a priori information regarding the font size, scanning resolution, type of layout, etc. of the document in our segmentation scheme.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Average
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?