<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Immersive virtual reality (VR) applications require ultra-high data rate and low-latency for smooth operation. Hence in this paper, aiming to improve VR experience in multi-user VR wireless video streaming, a deep-learning aided scheme for maximizing the quality of the delivered video chunks with low-latency is proposed. Therein the correlations in the predicted field of view (FoV) and locations of viewers watching 360$^\circ$ HD VR videos are capitalized on to realize a proactive FoV-centric millimeter wave (mmWave) physical-layer multicast transmission. The problem is cast as a frame quality maximization problem subject to tight latency constraints and network stability. The problem is then decoupled into an HD frame request admission and scheduling subproblems and a matching theory game is formulated to solve the scheduling subproblem by associating requests from clusters of users to mmWave small cell base stations (SBSs) for their unicast/multicast transmission. Furthermore, for realistic modeling and simulation purposes, a real VR head-tracking dataset and a deep recurrent neural network (DRNN) based on gated recurrent units (GRUs) are leveraged. Extensive simulation results show how the content-reuse for clusters of users with highly overlapping FoVs brought in by multicasting reduces the VR frame delay in 12\%. This reduction is further boosted by proactiveness that cuts by half the average delays of both reactive unicast and multicast baselines while preserving HD delivery rates above 98\%. Finally, enforcing tight latency bounds shortens the delay-tail as evinced by 13\% lower delays in the 99th percentile.
Accepted for publication in IEEE Transactions on Communications 17 pages, 10 Figures
FOS: Computer and information sciences, Mobile virtual reality (VR) streaming, Computer Science - Information Theory, Information Theory (cs.IT), deep recurrent neural network (DRNN), resource allocation, millimeter wave (mmWave), hierarchical clustering, multicasting, 5G, Lyapunov optimization
FOS: Computer and information sciences, Mobile virtual reality (VR) streaming, Computer Science - Information Theory, Information Theory (cs.IT), deep recurrent neural network (DRNN), resource allocation, millimeter wave (mmWave), hierarchical clustering, multicasting, 5G, Lyapunov optimization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 86 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |