Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Communications
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Taming the Latency in Multi-User VR 360°: A QoE-Aware Deep Learning-Aided Multicast Framework

Authors: Cristina Perfecto; Mohammed S. Elbamby; Javier Del Ser; Mehdi Bennis;

Taming the Latency in Multi-User VR 360°: A QoE-Aware Deep Learning-Aided Multicast Framework

Abstract

Immersive virtual reality (VR) applications require ultra-high data rate and low-latency for smooth operation. Hence in this paper, aiming to improve VR experience in multi-user VR wireless video streaming, a deep-learning aided scheme for maximizing the quality of the delivered video chunks with low-latency is proposed. Therein the correlations in the predicted field of view (FoV) and locations of viewers watching 360$^\circ$ HD VR videos are capitalized on to realize a proactive FoV-centric millimeter wave (mmWave) physical-layer multicast transmission. The problem is cast as a frame quality maximization problem subject to tight latency constraints and network stability. The problem is then decoupled into an HD frame request admission and scheduling subproblems and a matching theory game is formulated to solve the scheduling subproblem by associating requests from clusters of users to mmWave small cell base stations (SBSs) for their unicast/multicast transmission. Furthermore, for realistic modeling and simulation purposes, a real VR head-tracking dataset and a deep recurrent neural network (DRNN) based on gated recurrent units (GRUs) are leveraged. Extensive simulation results show how the content-reuse for clusters of users with highly overlapping FoVs brought in by multicasting reduces the VR frame delay in 12\%. This reduction is further boosted by proactiveness that cuts by half the average delays of both reactive unicast and multicast baselines while preserving HD delivery rates above 98\%. Finally, enforcing tight latency bounds shortens the delay-tail as evinced by 13\% lower delays in the 99th percentile.

Accepted for publication in IEEE Transactions on Communications 17 pages, 10 Figures

Country
Finland
Keywords

FOS: Computer and information sciences, Mobile virtual reality (VR) streaming, Computer Science - Information Theory, Information Theory (cs.IT), deep recurrent neural network (DRNN), resource allocation, millimeter wave (mmWave), hierarchical clustering, multicasting, 5G, Lyapunov optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 1%
Top 10%
Top 1%
Green
bronze